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Abstract

If T is any bounded linear operator on Besov spaces By"? (R")(j = 0, 1, and 0< 0| <o <a),
it is proved that the commutator [T, T,,] = TT, — T, T is bounded on BJ“(R"), if 7} is a
Fourier multiplier such that u is any (possibly unbounded) symbol with uniformly bounded
variation on dyadic coronas.
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1. Introduction

The mapping properties of commutators [T, M]=TM — MT, for operators
between function spaces, and their various generalizations play an important role in
harmonic analysis, PDE, interpolation theory and other related areas.
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A typical situation arises when M = M, is the pointwise multiplication by a
function b and T is a Calderén—Zygmund operator on R”. Then well-known results
of Calderon [4] and Coifman et al. [8] state, respectively, that the commutator is
bounded from L? into W!'? if b is a Lipschitz function, and from I” into L if
l<p<oo and be BMO. Recently, its boundedness between some other function
spaces, including Besov—Lipschitz and Triebel-Lizorkin spaces, has been extensively
studied (see [13] and the references therein).

A related situation appears when M = T, is the Fourier multiplier with symbol p,

ie. 7/"M7 = yf: where fis the Fourier transform of f. It was proved in [7] that, for
Besov spaces of periodic functions B;(T), the commutator

[T, T,]: By*(T)—B;%(T)

is bounded for a wide class of operators 7" and symbols p (not necessarily bounded).
The fact that the symbol p is a sequence of complex numbers was used in the proof.

In this paper, we will deal with Besov spaces on R”. Now p needs not be a sequence
of complex numbers and Theorem 3 of Cerda et al. [7] cannot be applied. However,
the simple device of taking averages (sece Lemma 2 below) allows to obtain a
commutator theorem (Theorem 1) for [T,T,] for Besov spaces By = B (R")
where, as in the periodic case, the boundedness assumption on p is not required.

The description of Besov classes as approximation spaces, the calculation of
almost optimal approximation elements in combination with real interpolation and
the cancellation properties of the commutators will be the main tools used in the
proof. See [5,6,9] and the references therein for commutator theorems related with
the main interpolation methods.

We briefly summarize the contents of this paper. In Section 2, we include the
needed definitions and background. Section 3 deals with admissible multipliers
defined via an appropriate notion of variation on dyadic coronas, and Section 4
contains Theorem 1, the main result of this paper.

If A and B are two Banach spaces, we write T : A — B to mean that 7 is a bounded
linear operator between 4 and B.

Finally, P<Q means that P<cQ for some constant ¢>0 independent of the
variables involved, while by P~ Q we mean that P<Q and Q< P.

2. Preliminaries

Let us now start by briefly recalling some results about real interpolation theory
and Besov spaces (see [1-3] for more details and definitions concerning interpolation
theory and [1,2,10,11] for general properties of Besov spaces).

If 0<f<1 and 1<¢<oo, for a given Banach couple 4 = (4g,A4;), the
corresponding interpolation Banach space is

Ay = Lxe2() = o+ Al <o)
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with

x5, = Il K (1, x)

where K(1,x) = K(t,x; A) = inf{||xo|| ,, + #]|x1]] 1, ;X = x0 + x1} is the Peetre’s K-
functional.

If A, B are two Banach couples, we denote by £ (A4; B) the set all linear operators
T:3(A)—2(B) such that T(4;)<=B; (j=0,1) and [T =
max(|| T 4, 5,; |7l 4, 5,) < 0. If Te £(A;B), then T: Ag4— By 4.

If
t d o0 d
= [roS [ s
is the Calderén operator, we set
o(A) = {xeZ(A);[|x|l,z = S(K(-,x))(1)< o0 }.

Li(dt/t)>

Observe that ¢(A) is a linear subspdce of X(A4) which contain all real interpolation
spaces Ay, and moreover || 7x||,z <||T|||x||,.1), (T € Z(4; B)).
r,

Given r>0, let V(r) = {gey’ suppg<|[—r,r]"} (V(0) ={0}), where ¢ is the

Fourier transform of the distribution g.
The Besov space B (or By (R")), with 0<o < o0 and 1<¢,p< o0, is defined by

0 r V/a
B;"q _ {fELp(R”); Hf“B;q — (/0 [r(’E(r,f)]da) < 0 }7

with E(r,f) = inf ey |lf — 9gll -
Real interpolation for couples of Besov spaces is described in the following
Lemma (cf. [2, Theorem 6.4.5]).

Lemma 1. Let 0<ay, o<, 1<p,q,q0,q4,r<0, 0<0<1 and o = (1 —0)a¢ +
06y. Then

6o, ; B _ pboy,
(B;(MO7 B;O'ql)e,q — B;“I7 (LI)7 B;o r)ﬂ,q _ Bpﬁo,q.

The calculation of almost optimal approximation elements is contained in the
following proposition.

Proposition 1. Let 0<0q,69< o0, 1<p,qo,Jo< o0, and assume that p = g — 69> 0.
Then

K( 15 B, B) =[P oo + 01f — Pof | o
and

K. f; By, L) ~||Pif | g + N = P |,

where P, is the Fourier multiplier with symbol y_, .
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Proof. Let g, V'(¢) be such that ||/ — g/||,, <2E(¢,f). Since (see [12, IV, Theorem
D 1SNl <clifll (4 <L2(R"), 1>0) we have that

W =Pl < = ailly +lg: = P Mo = IIf = 9illp + [1Pi(gr = )l
< CE(1.f).
Hence Theorem 4 of [7] applies and
K(t".f; By, B ®) || Pof || oo + 2°||f — Pl gonr- O

3. Admissible multipliers

Let R = [];_,[ak, bx] be a rectangle on R” with sides parallel to the axes and let m
be a function defined on R. We define Ay by

Agr(m) = A;lll)Aﬁ)-- A/(z )m(al, ey ),
where h; = b, — a; and A% is the difference operator in the kth variable, i.e.
A,<1k>m(a|, vy @) =mlay, .., ag-1, ak + R, A1y <. an) —m(ay, ..., ay).

Given j =0, let Q; = [-2,2]". We denote by C; = 0)\0;_1 (Cop = Q1) the j-dyadic
corona, and by C; the closed j-dyadic corona.

Following [14], the space of functions of bounded variation on C; is defined
inductively in n as follows:

If n =1, we say that m is of bounded variation on C_'/ if

supZ|m te) —m(tx_1)| < o0,
with the sup taken over all partitions n of C;=[-2,-2"1u[2Z 2], (C)=
[_171])

For n>2, we say that m is of bounded variation on C; if the following properties
are satisfied:

(1) We have that
sup Z |Ar(m)| < o0,

2  Rez
where the sup runs over all families R of rectangles with sides parallel to the axes
of disjoint interior whose vertices belong to C;.

(ii)) For each 1<k<n—1 the function m(xy,...,xx,2,...,2/) considered as a
function of the first k variables, is of bounded variation on the k-dimensional
rectangle R = H]]f:l [—2,2].

(iii) The condition analogous to (ii) is valid for every one of the n! permutations of
the variables xi, ..., x,.

We denote by [[m][ ¢, the sum of all quantities appearing in (i)—(ii).
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Definition 1. An admissible multiplier will be a function p: R"— C such that

V(w) = sup el ) < o0 (1)

Notice that log" (max{|xi|, ..., |x,|}) is a simple example of unbounded admissible

multiplier, but p(xi, ...,x,) = log"(max{|xi|, ..., [x,|}) if x;>0 (j=1,...,n) and
u(xy, ..., x,) = 0 otherwise, is not admissible.

Definition 2. A dyadic multiplier will be a function

H= {:uj j>0 Z :uj/va

which is constant on every corona C;.
For dyadic multipliers the admissibility condition (1) takes the form
Vn) = sup W — i< oo (u_y =0)
iz

and for any admissible multiplier, u, we claim that

0
= Z n(2, ---72/)ch = HiXc;

J=0 J=0

8

defines an admissible dyadic multiplier with

VD)<V (). (2)

Since the case n = 2 is already completely typical situation of the general case, to
avoid some notational complications, let us to prove this claim only in the case.
If j>1, considering the rectangle R = [2~!,2/] x [2~!,2/] we have that

= o [ < @270 = (@270 + (2, 2) = (27, 2)
+ (@, 27 = p@ )]+ (@7, 2) = (2, 2)]
=AY AS (2 2+ AD (2,27
+[AY (27, 20|
< lullye,
Similarly, if j = 0, considering R = [—1, 1] x [—1, 1], we get
ol < It — 110, 0)] + |1(0, 0)[ < [lel Iy + [1(0, 0)].

Finally, we recall that a dyadic interval of R will be one from the sequences
{[2k, 25417}, .5, {[=2K+1, =241}, ., and that by a dyadic rectangle on R" we mean a
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rectangle R which is the product of n dyadic intervals. We shall denote by & the
family of the dyadic rectangles.

4. The main result

Theorem 1. Let 1<¢,qo,q1,40,§1 < 0,00>60>0,0,>6,>0, such that oy — 6y =
g1 — 61, a=(1—-0)oy+66, 6=(1-0)0,+686 (0<b0<1), and assume that
I<p<oo.

If p is an admissible multiplier, then

T, Tl ggpoginy <ClIT

where T is any bounded linear operator between the couples of Besov spaces
(BZD-‘ID;B;()JI()) and (BZI#II;B[‘;]-,‘]I)’ and

171} = max([|T]] o gom,ggron ) 1T g grodo rrar)-

In order to prove the main theorem, let us start with a reduction to dyadic
multipliers.

Lemma 2. Let pu be an admissible multiplier and let ') its admissible dyadic
multiplier, i.e.

© o0
1D =5 0@, e = e,
=0 j=0

If T is any bounded linear operator from B to Bj", then
[T, T,u(d)] . B;"q —>B;’q
if and only if
[T, T,): By - B“.
Proof. Again in order to avoid some notational complications, let us assume that
n=2.
First, we are going to see that i = u — ) is bounded. Given (x,x;) €R?, let j=>0

be such that (x1,x2) e C;. Then, if x; = 2/,



J. Cerda, J. Martin | Journal of Approximation Theory 129 (2004) 119-128

125

Similarly, if x, =2/, |fi(x1,2)|<V(w). Finally, if (x1,x) is an interior point of Cj,

by considering the rectangle R of vertices (x1,x2), (2/,x2), (2,2), (x1,2),

A(xr, x2) | < |y, x2) = p(2,x0) + w(2,2) — pu(xy,2)|
+ (2, x2) = u(@, 2)| + |u(x1,2) — u(2,2)]

< |ullyey < Vw.

On the other hand, for any dyadic rectangle R, there is j>0 such that R= C; and

then, by (2),
18l ry < leally gy + 11y < el + 18Dy <2V (1)
Thus

sup [|Allyg) <2V (1)
ReZ

and T;:L/(R")— IL”(R"), by the Marcinkiewicz Multiplier Theorem (see [14]).
i

Hence

.. RO 7,4
Ty By — B,

since E(t, Taf )< infyep() || Taf — Tagll, <[|Tal|E(¢,f), and the proof ends by

observing that [T, T,] = [T, Tp] + [T, Tya]. O

Proof of Theorem 1. By the previous lemma, we may assume that u is a dyadic
admissible multiplier, i.e. =Y, mxc,, With py =0 and supy g — | < 0.

Then, formally,

T = Z 1 (Porf = Py f),
k=1

since py(Poef — Py /)" = (g, — %0, )f = e ]
Now, by denoting

Ao =M= Mo =My A=y = My e A = g — B -

(3)

we get supy || = supglpyey ) — p| <0, since Ao = py, Ao+ 41 = py, ---72?:0 A=

Hig1s -+
Then

0 k—1 0
TS =Y (Z Aj) (Pof = Pyrf) =Y 4 > _(Puf — Pyrf)
k=1 \j=0 =0 k>j
yields T,,f = Zjﬁo 2;(f — Pyf), a convergent series. Moreover

Ty:a(A)—>2(4), if 4= (B®;Bo),



126 J. Cerda, J. Martin | Journal of Approximation Theory 129 (2004) 119-128

since by Proposition 1, if p = gy — &9, we have that

K(27,f; A
I Tufllsiay < WlLe 317 = Pall o <1121, 32 XL
Jj=0 Jj=0
“ Ksfid)ds _ 2]
<2l el
plog2 J; s s plog?2

Similarly, 7}, : 6(B)— X(B), B= (By";B;1).
Now, given Te % (A4; B) and fea(A), it follows from (4) that

T,/ = i 2j(Tf — TPyf) (convergence in X(B)).

Moreover Tfea(B) since, by interpolation, T:g(A)—>o(B). Then T,T; =

>0 4(Tf — PyTf) in X(B). Hence, [T, T,]:a(4)—X(B) and

[T, T,)f = 4(Tf = TPyf) = > W(Tf — Pyf).
Jj=0 J=0

Obviously (Tf — TPyf) — (Tf — Py Tf) = Py Tf — TP,f (here is where cancellation
takes place) and we may decompose [T, T, ]f in two sums,

T, T,)f = Z} (PyTf — TPyf) + > X4(Tf — TPyf) — i(Tf — PyTf),

N\@

where @ = O(r) = {j=0;2°V+1) <1},
Applying Proposition 1 to 7f and f, since p = a9 — 69 = 01 — 61, we get

14 (Py Tf = TPyf )4, 4, < 1Al 1Py TS || gron + [ TPyf |I5")
< Al TR, 13 ).

Similarly,

(77 = TPuf) = 1(TF = Py TP | < 1L, TS,



J. Cerda, J. Martin | Journal of Approximation Theory 129 (2004) 119-128 127

Thus

K(t,[T, T\ B) <

> 4(PyTf — TPyf)

) B
+ 1| Y A(Tf — TPyf) — ii(Tf — PyTY)
N\O BZH]I
e K(2",f; 4)
Pl £ - ' 7
<<§K<z ST T )

< (/Ot K(s,f;/_l)%JF’/tm M?)
=S(K(-.f; 4))(1)

and, by Minkowski inequality and Hardy’s inequalities for averages (see [1]),
[T, Tulf||30.q<c|{f||go_q, with A4y, = B)? and By, = B;¥ by Lemma 1, and

¢ = c(ps 1Al [IT1). O

Remark 1. Once the reduction to dyadic multipliers has been established, using (3),
Theorem 3 of [7] could be possibly adapted to end the proof of Theorem 1. We have
preferred to include here an easier direct proof that does not use the abstract
methods of [6] and that, in combination with Lemma 2, can be also used in the
periodic to give a short proof of the commutator theorem presented in [7], including
the case of several variables.

Remark 2. The admissibility conditions on the multipliers cannot be weakened if
[T, T,] has to be bounded for the elementary operator Tf(x) = f(2x), since if u is
dyadic and [T, T,] is bounded when Tf(x) = f(2x), by considering f* such that

Ifllg+ = 1 and supp f= Cy, then

T Tulf g = btesr = 14l

and supy |1 — | < 0.

Remark 3. By Proposition 1, we may also consider the Banach couples (B;s%’LP )
and (B7“', L), but reiteration would lead to the same result.

Remark 4. A commutator result similar to Theorem 1 holds for Besov spaces B!
when X is any r.i. space with Boyd indices strictly between 0 and 1, since what is
really needed in Proposition 1 is the uniform boundedness of P, on X, which is an
interpolation space between two L” spaces with 1 <p< c0.
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