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Abstract

If T is any bounded linear operator on Besov spaces B
sj ;qj
p ðRnÞðj ¼ 0; 1; and 0os1osos0Þ;

it is proved that the commutator ½T ;Tm� ¼ TTm � TmT is bounded on Bs;q
p ðRnÞ; if Tm is a

Fourier multiplier such that m is any (possibly unbounded) symbol with uniformly bounded

variation on dyadic coronas.
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1. Introduction

The mapping properties of commutators ½T ;M� ¼ TM � MT ; for operators
between function spaces, and their various generalizations play an important role in
harmonic analysis, PDE, interpolation theory and other related areas.
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A typical situation arises when M ¼ Mb is the pointwise multiplication by a
function b and T is a Calderón–Zygmund operator on Rn: Then well-known results
of Calderón [4] and Coifman et al. [8] state, respectively, that the commutator is

bounded from L2 into W 1;2 if b is a Lipschitz function, and from Lp into Lp if
1opoN and bABMO: Recently, its boundedness between some other function
spaces, including Besov–Lipschitz and Triebel–Lizorkin spaces, has been extensively
studied (see [13] and the references therein).

A related situation appears when M ¼ Tm is the Fourier multiplier with symbol m;

i.e. dTmfTmf ¼ mf̂; where f̂ is the Fourier transform of f : It was proved in [7] that, for

Besov spaces of periodic functions Bs;q
p ðTÞ; the commutator

½T ;Tm� : Bs;q
p ðTÞ-Bs;q

p ðTÞ

is bounded for a wide class of operators T and symbols m (not necessarily bounded).
The fact that the symbol m is a sequence of complex numbers was used in the proof.

In this paper, we will deal with Besov spaces on Rn:Now m needs not be a sequence
of complex numbers and Theorem 3 of Cerdà et al. [7] cannot be applied. However,
the simple device of taking averages (see Lemma 2 below) allows to obtain a
commutator theorem (Theorem 1) for ½T ;Tm� for Besov spaces Bs;q

p ¼ Bs;q
p ðRnÞ

where, as in the periodic case, the boundedness assumption on m is not required.
The description of Besov classes as approximation spaces, the calculation of

almost optimal approximation elements in combination with real interpolation and
the cancellation properties of the commutators will be the main tools used in the
proof. See [5,6,9] and the references therein for commutator theorems related with
the main interpolation methods.

We briefly summarize the contents of this paper. In Section 2, we include the
needed definitions and background. Section 3 deals with admissible multipliers
defined via an appropriate notion of variation on dyadic coronas, and Section 4
contains Theorem 1, the main result of this paper.

If A and B are two Banach spaces, we write T : A-B to mean that T is a bounded
linear operator between A and B:

Finally, P%Q means that PpcQ for some constant c40 independent of the
variables involved, while by PCQ we mean that P%Q and Q%P:

2. Preliminaries

Let us now start by briefly recalling some results about real interpolation theory
and Besov spaces (see [1–3] for more details and definitions concerning interpolation
theory and [1,2,10,11] for general properties of Besov spaces).

If 0oyo1 and 1pqpN; for a given Banach couple %A ¼ ðA0;A1Þ; the
corresponding interpolation Banach space is

%Ay;q ¼ fxASð %AÞ ¼ A0 þ A1; jjxjj %Ay;q
oNg
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with

jjxjj %Ay;q
:¼ jjt�yKðt; xÞjjLqðdt=tÞ;

where Kðt; xÞ ¼ Kðt; x; %AÞ :¼ inffjjx0jjA0
þ tjjx1jjA1

; x ¼ x0 þ x1g is the Peetre’s K-

functional.

If %A; %B are two Banach couples, we denote by Lð %A; %BÞ the set all linear operators
T : Sð %AÞ-Sð %BÞ such that TðAjÞCBj ðj ¼ 0; 1Þ and jjT jj ¼
maxðjjT jjA0;B0

; jjT jjA1;B1
ÞoN: If TALð %A; %BÞ; then T : %Ay;q- %By;q:

If

Sf ðtÞ :¼
Z t

0

f ðsÞ ds

s
þ t

Z
N

t

f ðsÞ ds

s2

is the Calderón operator, we set

sð %AÞ :¼ fxASð %AÞ; jjxjjsð %AÞ :¼ SðKð�; xÞÞð1ÞoNg:

Observe that sð %AÞ is a linear subspace of Sð %AÞ which contain all real interpolation

spaces %Ay;q and moreover jjTxjjsð %BÞpjjT jj jjxjjsð %AÞ; ðTALð %A; %BÞÞ:
Given r40; let VðrÞ ¼ fgAS0 : supp ĝC½�r; r�ng ðVð0Þ ¼ f0gÞ; where ĝ is the

Fourier transform of the distribution g:
The Besov space Bs;q

p (or Bs;q
p ðRnÞ), with 0osoN and 1pq; poN; is defined by

Bs;q
p ¼ fALpðRnÞ; jjf jjBs;q

p
¼

Z
N

0

½rsEðr; f Þ�q dr

r

� �1=q

oN

( )
;

with Eðr; f Þ :¼ infgAVðrÞjjf � gjjLp :

Real interpolation for couples of Besov spaces is described in the following
Lemma (cf. [2, Theorem 6.4.5]).

Lemma 1. Let 0os0; *s0oN; 1pp; q; q0; qq; roN; 0oyo1 and s ¼ ð1� yÞs0 þ
y *s0: Then

ðBs0;q0
p ;B *s0;q1

p Þy;q ¼ Bs;q
p ; ðLp;Bs0;r

p Þy;q ¼ Bys0;q
p :

The calculation of almost optimal approximation elements is contained in the
following proposition.

Proposition 1. Let 0os0; *s0oN; 1pp; q0; q̃0oN; and assume that r :¼ s0 � *s040:
Then

Kðtr; f ;Bs0;q0
p ;B *s0;q̃0

p ÞCjjPtf jjBs0 ;q0
p

þ trjjf � Ptf jjB *s0 ;q̃0
p

and

Kðts; f ;Bs;q
p ;LpÞCjjPtf jjBs;q

p
þ tsjjf � Ptf jjLp ;

where Pt is the Fourier multiplier with symbol w½�t;t�n :
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Proof. Let gtAVðtÞ be such that jjf � gtjjLpp2Eðt; f Þ: Since (see [12, IV, Theorem

4]) jjPtf jjLPpcpjjf jjLp ð8fALpðRnÞ; t40Þ we have that

jjf � Ptf jjLpp jjf � gtjjLp þ jjgt � Ptf jjLp ¼ jjf � gtjjLp þ jjPtðgt � f ÞjjLp

pCEðt; f Þ:
Hence Theorem 4 of [7] applies and

Kðtr; f ;Bs0;q0
p ;B *s0;q̃0

p ÞCjjPtf jjBs0 ;q0
p

þ trjjf � Ptf jjB *s0 ;q̃0
p

: &

3. Admissible multipliers

Let R ¼
Qn

k¼1½ak; bk� be a rectangle on Rn with sides parallel to the axes and let m

be a function defined on R: We define DR by

DRðmÞ ¼ Dð1Þ
h1
Dð2Þ

h2
?DðnÞ

hn
mða1;y; anÞ;

where hk ¼ bk � ak and DðkÞ is the difference operator in the kth variable, i.e.

DðkÞ
h mða1;y; anÞ ¼ mða1;y; ak�1; ak þ hk; akþ1;y; anÞ � mða1;y; anÞ:

Given jX0; let Qj ¼ ½�2j; 2j�n: We denote by Cj ¼ Qj\Qj�1 ðC0 ¼ Q1Þ the j-dyadic

corona, and by %Cj the closed j-dyadic corona.

Following [14], the space of functions of bounded variation on %Cj is defined

inductively in n as follows:

If n ¼ 1; we say that m is of bounded variation on %Cj if

sup
p

X
jmðtkÞ � mðtk�1ÞjoN;

with the sup taken over all partitions p of %Cj ¼ ½�2j;�2j�1�,½2j�1; 2j�; ð %C0 ¼
½�1; 1�Þ:

For nX2; we say that m is of bounded variation on %Cj if the following properties

are satisfied:

(i) We have that

sup
R

X
RAR

jDRðmÞjoN;

where the sup runs over all families R of rectangles with sides parallel to the axes

of disjoint interior whose vertices belong to %Cj:

(ii) For each 1pkpn � 1 the function mðx1;y; xk; 2
j;y; 2jÞ considered as a

function of the first k variables, is of bounded variation on the k-dimensional

rectangle R ¼
Qk

j¼1½�2j; 2j�:
(iii) The condition analogous to (ii) is valid for every one of the n! permutations of

the variables x1;y; xn:

We denote by jjmjjVð %CjÞ the sum of all quantities appearing in (i)–(iii).

ARTICLE IN PRESS
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Definition 1. An admissible multiplier will be a function m : Rn-C such that

VðmÞ :¼ sup
jX0

jjmjjVð %CjÞoN: ð1Þ

Notice that logþðmaxfjx1j;y; jxnjgÞ is a simple example of unbounded admissible

multiplier, but mðx1;y; xnÞ ¼ logþðmaxfjx1j;y; jxnjgÞ if xj40 ðj ¼ 1;y; nÞ and

mðx1;y; xnÞ ¼ 0 otherwise, is not admissible.

Definition 2. A dyadic multiplier will be a function

m ¼ fmjgjX0 :¼
XN
j¼0

mjwCj
;

which is constant on every corona Cj:

For dyadic multipliers the admissibility condition (1) takes the form

VðmÞ ¼ sup
jX0

jmj � mj�1joN ðm�1 ¼ 0Þ

and for any admissible multiplier, m; we claim that

mðdÞ :¼
XN
j¼0

mð2j;y; 2jÞwCj
¼
XN
j¼0

mjwCj

defines an admissible dyadic multiplier with

VðmðdÞÞpVðmÞ: ð2Þ

Since the case n ¼ 2 is already completely typical situation of the general case, to
avoid some notational complications, let us to prove this claim only in the case.

If jX1; considering the rectangle R ¼ ½2j�1; 2j � � ½2j�1; 2j� we have that

jmj � mj�1jp jmð2j�1; 2j�1Þ � mð2j; 2j�1Þ þ mð2j; 2jÞ � mð2j�1; 2jÞj

þ jmð2j; 2j�1Þ � mð2j; 2jÞj þ jmð2j�1; 2jÞ � mð2j ; 2jÞj

¼ jDð1Þ
2j�1D

ð2Þ
2j�1mð2j�1; 2j�1Þj þ jDð2Þ

2j�1mð2j; 2j�1Þj

þ jDð1Þ
2j�1mð2j�1; 2jÞj

p jjmjjVð %CjÞ:

Similarly, if j ¼ 0; considering R ¼ ½�1; 1� � ½�1; 1�; we get

jm0jpjm0 � mð0; 0Þj þ jmð0; 0ÞjpjjmjjVð %C0Þ þ jmð0; 0Þj:

Finally, we recall that a dyadic interval of R will be one from the sequences

f½2k; 2kþ1�gkAZ; f½�2kþ1;�2k�gkAZ; and that by a dyadic rectangle on Rn we mean a
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rectangle R which is the product of n dyadic intervals. We shall denote by D the
family of the dyadic rectangles.

4. The main result

Theorem 1. Let 1pq; q0; q1; q̃0; q̃1oN; s04 *s040;s14 *s140; such that s0 � *s0 ¼
s1 � *s1; s ¼ ð1� yÞs0 þ y *s0; *s ¼ ð1� yÞs1 þ y *s1 ð0oyo1Þ; and assume that

1opoN:
If m is an admissible multiplier, then

jj½T ;Tm�jjLðBs;q
p ;B

*s;q
p ÞpcjjT jj;

where T is any bounded linear operator between the couples of Besov spaces

ðBs0;q0
p ;B *s0;q̃0

p Þ and ðBs1;q1
p ;B *s1;q̃1

p Þ; and

jjT jj ¼ maxðjjT jjLðBs0 ;q0
p ;B

s1 ;q1
p Þ; jjT jj

LðB *s0 ;q̃0
p ;B

*s1 ;q̃1
p ÞÞ:

In order to prove the main theorem, let us start with a reduction to dyadic
multipliers.

Lemma 2. Let m be an admissible multiplier and let mðdÞ its admissible dyadic

multiplier, i.e.

mðdÞ :¼
XN
j¼0

mð2j;y; 2jÞwCj
¼
XN
j¼0

mjwCj
:

If T is any bounded linear operator from Bs;q
p to B *s;q

p ; then

½T ;TmðdÞ� : Bs;q
p -B *s;q

p

if and only if

½T ;Tm� : Bs;q
p -B *s;q

p :

Proof. Again in order to avoid some notational complications, let us assume that
n ¼ 2:

First, we are going to see that *m ¼ m� mðdÞ is bounded. Given ðx1; x2ÞAR2; let jX0

be such that ðx1; x2ÞACj: Then, if x1 ¼ 2j;

j *mð2j; x2Þj ¼ jmð2j; x2Þ � mð2j; 2jÞjpjjmjjVð %CjÞpVðmÞ:
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Similarly, if x2 ¼ 2j; j *mðx1; 2
jÞjpVðmÞ: Finally, if ðx1; x2Þ is an interior point of Cj ;

by considering the rectangle R of vertices ðx1; x2Þ; ð2j ; x2Þ; ð2j; 2jÞ; ðx1; 2
jÞ;

j *mðx1; x2Þjp jmðx1; x2Þ � mð2j; x2Þ þ mð2j; 2jÞ � mðx1; 2
jÞj

þ jmð2j; x2Þ � mð2j; 2jÞj þ jmðx1; 2
jÞ � mð2j; 2jÞj

p jjmjjVð %CjÞpVðmÞ:

On the other hand, for any dyadic rectangle R; there is jX0 such that RC %Cj and

then, by (2),

jj *mjjVðRÞpjjmjjVðRÞ þ jjmðdÞjjVðRÞpjjmjjVð %CjÞ þ jjmðdÞjjVð %CjÞp2VðmÞ:

Thus

sup
RAD

jj *mjjVðRÞp2VðmÞ

and T *m : LpðRnÞ-LpðRnÞ; by the Marcinkiewicz Multiplier Theorem (see [14]).

Hence

T *m : Bs;q
p -Bs;q

p ;

since Eðt;T *mf Þp infgAVðtÞ jjT *mf � T *mgjjLppjjT *mjjEðt; f Þ; and the proof ends by

observing that ½T ;Tm� ¼ ½T ;T *m� þ ½T ;TmðdÞ �: &

Proof of Theorem 1. By the previous lemma, we may assume that m is a dyadic

admissible multiplier, i.e. m ¼
P

N

k¼0 mkwCk
; with m0 ¼ 0 and supk jmkþ1 � mkjoN:

Then, formally,

Tmf ¼
XN
k¼1

mkðP2k f � P2k�1 f Þ; ð3Þ

since mkðP2k f � P2k�1 f Þ4 ¼ mkðwQk
� wQk�1

Þf̂ ¼ mkwCk
f̂:

Now, by denoting

l0 ¼ m1 � m0 ¼ m1; l1 ¼ m2 � m1;y; lk ¼ mkþ1 � mk;y

we get supk jlkj ¼ supkjmkþ1 � mkjoN; since l0 ¼ m1; l0 þ l1 ¼ m2;y;
Pk

j¼0 lj ¼
mkþ1;y

Then

Tmf ¼
XN
k¼1

Xk�1

j¼0

lj

 !
ðP2k f � P2k�1 f Þ ¼

XN
j¼0

lj

X
k4j

ðP2k f � P2k�1 f Þ

yields Tmf ¼
P

N

j¼0 ljðf � P2j f Þ; a convergent series. Moreover

Tm : sð %AÞ-Sð %AÞ; if %A ¼ ðBs0;q0
p ;B *s0;q̃0

p Þ; ð4Þ
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since by Proposition 1, if r ¼ s0 � *s0; we have that

jjTmf jjSð %AÞp jjljj
N

X
jX0

jjf � P2j f jj
B

*s0 ;q̃0
p

%jjljj
N

X
jX0

Kð2rj; f ; %AÞ
2rj

p
2rjjljj

N

r log 2

Z
N

1

Kðs; f ; %AÞ
s

ds

s
p

2rjjljj
N

r log 2
jjf jjsð %AÞ:

Similarly, Tm : sð %BÞ-Sð %BÞ; %B ¼ ðBs1;q1
p ;B *s1;q̃1

p Þ:
Now, given TALð %A; %BÞ and fAsð %AÞ; it follows from (4) that

TTmf ¼
XN
j¼0

ljðTf � TP2j f Þ ðconvergence in Sð %BÞÞ:

Moreover TfAsð %BÞ since, by interpolation, T : sð %AÞ-sð %BÞ: Then TmTf ¼P
N

j¼0 ljðTf � P2j Tf Þ in Sð %BÞ: Hence, ½T ;Tm� : sð %AÞ-Sð %BÞ and

½T ;Tm�f ¼
XN
j¼0

ljðTf � TP2j f Þ �
XN
j¼0

ljðTf � P2j f Þ:

Obviously ðTf � TP2j f Þ � ðTf � P2j Tf Þ ¼ P2j Tf � TP2j f (here is where cancellation
takes place) and we may decompose ½T ;Tm�f in two sums,

½T ;Tm�f ¼
X
Y

ljðP2j Tf � TP2j f Þ þ
X
N\Y

ljðTf � TP2j f Þ � ljðTf � P2j Tf Þ;

where Y ¼ YðtÞ :¼ fjX0; 2rðjþ1Þotg:
Applying Proposition 1 to Tf and f ; since r ¼ s0 � *s0 ¼ s1 � *s1; we get

jjljðP2j Tf � TP2j f Þjjs1;q1p jjljj
N
ðjjP2j Tf jjBs1 ;q1

p
þ jjTP2j f jjs1;q1Bp

Þ

% jjljj
N
jjT jjKð2rj; f ; %AÞ:

Similarly,

jjljðTf � TP2j f Þ � ljðTf � P2j Tf Þjj
B

*s1 ;q̃1
p

%jjljj
N
jjT jjKð2rj; f ; %AÞ

2rj
:
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Thus

Kðt; ½T ;Tm�f ; %BÞp
X
Y

ljðP2j Tf � TP2j f Þ
�����

�����
�����

�����
B
s1 ;q1
p

þ t
X
N\Y

ljðTf � TP2j f Þ � ljðTf � P2j Tf Þ
�����

�����
�����

�����
B

*s1 ;q̃1
p

%

X
Y

Kð2rj; f ; %AÞ þ t
X
N\Y

Kð2rj ; f ; %AÞ
2rj

 !

%

Z t

0

Kðs; f ; %AÞ ds

s
þ t

Z
N

t

Kðs; f ; %AÞ
s

ds

s

� �
¼SðKð�; f ; %AÞÞðtÞ

and, by Minkowski inequality and Hardy’s inequalities for averages (see [1]),

jj½T ;Tm�f jj %By;q
pcjjf jj %Ay;q

; with %Ay;q ¼ Bs;q
p and %By;q ¼ B *s;q

p by Lemma 1, and

c ¼ cðr; jjljj
N
; jjT jjÞ: &

Remark 1. Once the reduction to dyadic multipliers has been established, using (3),
Theorem 3 of [7] could be possibly adapted to end the proof of Theorem 1. We have
preferred to include here an easier direct proof that does not use the abstract
methods of [6] and that, in combination with Lemma 2, can be also used in the
periodic to give a short proof of the commutator theorem presented in [7], including
the case of several variables.

Remark 2. The admissibility conditions on the multipliers cannot be weakened if
½T ;Tm� has to be bounded for the elementary operator Tf ðxÞ ¼ f ð2xÞ; since if m is

dyadic and ½T ;Tm� is bounded when Tf ðxÞ ¼ f ð2xÞ; by considering f such that

jjf jjBs;q
p

¼ 1 and supp f̂CCk; then

jj½T ;Tm�f jjBs;q
p
Cjmkþ1 � mkj

and supk jmkþ1 � mkjoN:

Remark 3. By Proposition 1, we may also consider the Banach couples ðBs;q0
p ;LPÞ

and ðBs;q1
q ;LqÞ; but reiteration would lead to the same result.

Remark 4. A commutator result similar to Theorem 1 holds for Besov spaces B
s;q
X

when X is any r.i. space with Boyd indices strictly between 0 and 1, since what is
really needed in Proposition 1 is the uniform boundedness of Pt on X ; which is an
interpolation space between two Lp spaces with 1opoN:
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